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Abstract

GMRES(m) is a popular algorithm for solving large linear systems Ax = b where A is a general matrix, possibly
nonsymmetric. GMRES(m) consumes less computational resources than GMRES, but its convergence is not guar-
anteed. We propose a new proportional-derivative control-inspired law for updating the parameter m adaptively,
resulting in the method PD-Gmres(m). Numerical experiments using problems from the University of Florida Matrix
Collection show that PD-Gmres(m) has good convergence properties, as well as, robustness when it encounters a
very slow convergence.

Introduction

Restarted GMRES, denoted as GMRES(m) was proposed by Saad and Schultz [1] to reduce GMRES high com-
putational costs. Normally, at each cycle, the restart parameter m is set to a constant value. However, if the
appropriate m is not chosen, the convergence of GMRES(m) is not guaranteed [2].

To improve GMRES(m) several authors modify m using adaptive strategies. These could be classified into three
groups:

I simple rules, which however contain empirically chosen parameters that are hard to guess/estimate [3, 4];
I rules involving non-trivial calculations of eigenvalues or zeros of polynomials [5, 6]
I simple empirical rules [7, 8].

Why changing m gives good results? The answer is experimental. Baker et al. observed experimentally that
GMRES(m) residual vectors may alternate directions (rj+1 ≈ γrj−1 with γ ≤ 1). Furthermore, GMRES(m) slow
convergence can often be attributed to this alternating behavior [9]. Heuristically, changing m tries to avoid this,
even using a random m gives better time to solution than a fixed m.

GMRES(m) and PD-GMRES(m)

Using the recurrences in GMRES(m) and a feedback law mj = Φ(rj−1,mj−1) yields a control model and the
block diagram below.


mj = Φ(rj−1,mj−1)

zj−1 = GMRES(A, rj−1,mj),
xj = xj−1 + zj−1,
rj = b − Axj.
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Block diagram for GMRES(m)

The proposed PD-GMRES(m) updates m using a discrete PD (proportional-derivative) inspired controller. So the
function Φ(rj−1,mj−1) takes the form:

mj+1 = mj + α
‖rj‖
‖rj−1‖

+ β
‖rj‖ − ‖rj−2‖

2‖rj−1‖
(1)

where α, β ∈ R.
The advantage of (1) is that only a few additional vectors need to be stored and the controller has the capacity to
increase the dimension of the Krylov subspace if any convergence problem is detected. Note that if the function
Φ(rj−1,mj−1) is a constant value, then we obtain standard GMRES(m).

In this work we consider cos(∠(rj−1, rj−2)) =
‖rj−1‖
‖rj−2‖

(see [9]) as a measure of convergence. cos(∠(rj−1, rj−2)) ≈ 0,
i.e. near orthogonal residuals, means good convergence. cos(∠(rj−1, rj−2)) ≈ 1, i.e. near parallel residuals,
means poor convergence.

The derivative ‖rj‖−‖rj−2‖
2‖rj−1‖

in (1) measures the rate of convergence.

The action of the proportional and derivative parts can be summarized as follows:
I If GMRES(m) has good convergence, the derivative part is important and β updates m.
I If GMRES(m) has poor convergence, the proportional part cos(∠(rj−1, rj−2)) ≈ 1 and α updates m.

The parameters α, β have the values:
I α = −3 because the proportional part acts like the rule in [7]. There decreasing m in−3 showed good results.
I β = 5 because in many of the experiments, the derivative is small and we want to amplify its effect. Note that

residual norms have decreasing values. Because of that a value of 5 decreases m.

Proposed Rule

Input: mj−1 last m value, minitial last m initial value , mmin minimum m value,
r residual vectors, j cycle for which m will be computed,
step value to use for increasing m when mmin is reached
Output: mj restart value for cycle j
if (j > 3) then

mj = mj−1 +

⌊(
− 3‖rj−1‖

‖rj−2‖
+ 5‖rj−1‖−‖rj−3‖

2‖rj−2‖
)⌋

else if (j > 2) then

mj = mj−1 +

⌊
− 3‖rj−1‖

‖rj−2‖

⌋
else

mj = minitial
end
if (mj < mmin) then

minitial = minitial + mstep
mj = minitial

end
return mj

Problems

The solved linear systems Ax =
b use A from the University
of Florida Matrix Collection [10]
which includes problems from
Matrix Market. For problems with-
out a right hand side b, it was
randomly generated using a uni-
form distribution with values be-
tween the minimum and the max-
imum (A)i,j.

Problem List, n is the size of A, nnz is the number of nonzero elements
Problem n nnz Application area

1 add20 2395 17319 Computer component design
2 cdde1 961 4681 2D convection-diffusion operator
3 circuit 2 4510 21199 Circuit simulation
4 fpga trans 01 1220 7382 Circuit simulation
5 orsirr 1 1030 6858 Oil reservoir simulation
6 orsreg 1 2205 14133 Oil reservoir simulation
7 pde2961 2961 14585 Model PDE equation
8 raefsky1 3242 294276 Incompressible fluid flow
9 raefsky2 3242 293551 Incompressible fluid flow

10 rdb2048 2048 12032 Reaction-diffusion Brusselator model
11 sherman4 1104 3786 Oil reservoir simulation
12 steam2 600 13760 Injected steam oil recovery
13 wang2 2903 19093 Electron continuity equations
14 watt 1 1856 11360 Petroleum engineering
15 young3c 841 3988 Acoustic scattering

Results

We solved the system Ax = b using: stan-
dard GMRES(m), Baker’s rule (obtained from
[7]), Goncalez’s rule (obtained from [8]) and
PD-GMRES(m).

Algorithms’ configurations:
I The initial solution is x0 = 0 or equivalently r0 = b.
I The stopping criterion at the jth iteration is ‖rj‖

‖r0‖
< 10−9.

I Standard GMRES(m): m = 30.
I PD-GMRES(m): minitial = 30, mstep = 3, mmin = 1.
I Alg. 1 (Baker’s rule): mmin = 1, mmax = 30, mstep = 3.
I Alg. 2 (Goncalez’s rule): mini = 10, mmax = 30,

tolerance = 10−9.
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Relative Execution Times. Bars are grouped by problems.
The lower the bar, the best the time to solution. In problem
15, only the PD-GMRES(m) converged.

Examples

Problem 13: Wang2
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gmres(m), t=42.1847, conv=1
Baker gmres(m), t=21.7237, conv=1
PD Controller gmres(m), t=18.4473, conv=1
Goncalez gmres(m), t=32.9492, conv=1
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gmres(m), t=42.1847, conv=1
Baker gmres(m), t=21.7237, conv=1
PD Controller gmres(m), t=18.4473, conv=1
Goncalez gmres(m), t=32.9492, conv=1

Problem 15: Young3c

0 100 200 300 400 500 600 700 800 900 1000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

lo
g(

r i/r
0),

 r
0 e

xc
lu

de
d

Number of Restart Cycle

Residuals, young3c.mat, tol =1e−09

 

 

gmres(m), t=58.6462, conv=0
Baker gmres(m), t=58.1739, conv=0
PD Controller gmres(m), t=14.6042, conv=1
Goncalez gmres(m), t=58.3158, conv=0
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gmres(m), t=58.6462, conv=0
Baker gmres(m), t=58.1739, conv=0
PD Controller gmres(m), t=14.6042, conv=1
Goncalez gmres(m), t=58.3158, conv=0

Relative residual norms ‖rj‖/‖r0‖ Vs. cycle number
j . ‖r0‖ excluded.

Restart value mj Vs. cycle number j .

Conclusions

I For all but two (problems 7 and 10) of the 15 test problems, PD-GMRES(m) has a better rate of
convergence than GMRES(30), Baker’s and Goncalez’s algorithms.

I For problem 15, only PD-GMRES(m) converged, the other tested methods presented slow convergence.
I PD-GMRES(m) is simple to implement.
I Future work may find better heuristics for α, β in (1)
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